基于粒子群优化支持向量机的瑞芬太尼血药浓度预测模型

汤井田,曹扬,肖嘉莹,郭曲练

中国药学杂志 ›› 2013, Vol. 48 ›› Issue (16) : 1394-1399.

中国药学杂志 ›› 2013, Vol. 48 ›› Issue (16) : 1394-1399. DOI: 10.11669/cpj.2013.16.015
论著

基于粒子群优化支持向量机的瑞芬太尼血药浓度预测模型

  • 汤井田1,曹扬1,肖嘉莹1,郭曲练2
作者信息 +

Remifentanil Blood Concentration Forecast Model based on Support Vector Machine with Particle Swarm Optimization

  • TANG Jing-tian1,CAO Yang1,XIAO Jia-ying1,GUO Qu-lian2
Author information +
文章历史 +

摘要

目的建立基于粒子群优化算法的瑞芬太尼血药浓度支持向量和模型。方法本实验采用粒子群算法(particleswarmoptimization,PSO)优化支持向量机(supportvectormachine,SVM)算法,建立粒子群优化支持向量机(PSO-SVM)瑞芬太尼血药浓度预测模型。该模型能从较少的采样数据中准确捕捉血药浓度和时间、病人体征、给药方案之间的非线性关系。结果粒子群优化支持向量机的平均误差为-1.07%,非线性混合效应模型(nonlinearmixedeffectsmodeling,NONMEM)为-2.24%,粒子群优化支持向量机网络的绝对平均误差9.09%,非线性混合效应模型为19.92%。结论粒子群优化支持向量机模型能迅速,稳定预测瑞芬太尼血药浓度,且准确度高,误差较小。该方法原理简单,实现便捷,运算速度快,适用于半衰期较短的麻醉速效药等多房室结构药物的群体药代药效学研究和分析。

Abstract

OBJECTIVE To develop a SVM model which is constructed by using particle swarm optimization to a predict the plasma concentration of remifentail. METHODS This research establishes a PSO-SVM model which is constructed by using particle swarm optimization to a predict the plasma concentration of remifentanil. The model was capable of capturing the nonlinear relationship among plasma concentration,time,and the patient′s signs exactly. RESULTS The average error of PSO-SVM is -1.07%,while that of NONMEM is -2.24%. The absolute average error of PSO-SVM is 9.09%,while that of NONMEM is 19.92%. CONCLUSION Experimental results indicate that PSO-SVM model could predict the plasma concentration of remifentanil rapidly and stably,with high accuracy and low error. For the characteristic of simple principle and fast computing speed,this method is suitable to data analysis of short-acting anesthesia drug population pharmacokinetics and pharmacodynamics.

关键词

粒子群优化支持向量机模型 / 瑞芬太尼 / 血药浓度

Key words

PSO-SVM model / remifentanil / plasma concentration

引用本文

导出引用
汤井田,曹扬,肖嘉莹,郭曲练. 基于粒子群优化支持向量机的瑞芬太尼血药浓度预测模型[J]. 中国药学杂志, 2013, 48(16): 1394-1399 https://doi.org/10.11669/cpj.2013.16.015
TANG Jing-tian,CAO Yang,XIAO Jia-ying,GUO Qu-lian. Remifentanil Blood Concentration Forecast Model based on Support Vector Machine with Particle Swarm Optimization[J]. Chinese Pharmaceutical Journal, 2013, 48(16): 1394-1399 https://doi.org/10.11669/cpj.2013.16.015
中图分类号: R969   

参考文献

[1] SCHTTLE J,SCHWILDER H,STOEKEL H.Pharmacokinetics as applied to total intravenous anesthesia.Practical Implication Anesthesia,1983,38(1):53-56.[2] MARSH B,WHITE M,MORTON N,et al.Pharmacokinetic model driven infusion of propofol in children.Br J Anesthesia, 1991,67(1):41-48.[3] ROSOW C.Remifentanil:A unique opioid analgesics.Anesthesiology,1993,79(5):875-876.[4] EGAN T D,LEMMENS H J,FISET P,et al.The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers.Anesthesiology,1993,79(5):881-892.[5] SHEINER L B,ROSENBERG B,MARATHE V V.Estimation of population characteristics of pharmacokinetic parameters from routine clinical data.J Pharmacokinet Biopharm,1977,5(5):445-479.[6] SHEINER L B.Analysis of pharmacokinetic data using parametric models.III.Hypothesis tests and confidence intervals.J Pharmacokinet Biopharm,1986,14(5):539-555.[7] AGATONOVIC K S,BERESFORD R.Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.J Pharm Biomed Anal, 2000,22(5):717-727.[8] BRIER M E,ZURADA J M,ARONOFF G R.Neural network predicted peak and trough gentamicin concentrations.Pharm Res, 1995,12(3):406-412.[9] CHOW H H,TOLLE K M,ROE D J,et al.Application of neural networks to population pharmacokinetic data analysis .J Pharm Sci,1997,86(7):840-845. LIU Z,HUANG R B,YANG Z M,et al.Predicting the plasma concentration of sodium valproate using radial basis function neural networks.Science Technology and Engineering(科学技术与工程),2008,8(3):753-756. WU M I,ZHU Z Y,WANG J.Prediction of serum valproic acid concentration of epileptic children with back propagation neural network model. Chin Pharm J(中国药学杂志),2012,47(10):766-771. CORTES C,VAPNIK V.Support-vector network.Machine Learning,1995,20:273-297. SMOLA A J,SCH IKOPF B.A tutorial on support vector regression.Statistics and Computing, 2004,14(3):199-222. SUYKENS J A,VANDEWALLE J,DE MOOR B.Optimal control by least squares support vector machines.Neural Networks,2001,14(1):23-25. BURGES C J C.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998,2(2):121-167. KENNEDY J,EBERHART R.Particle swarm optimization .in: Proceedings of the 4th IEEE International Conference on Neural Networks.Piscataway: IEEE Service Center,1995,4:1942 -1948. RASMUSSEN T K,KRINK T.Improved hidden markov model training for multiple sequence alignment by a particle swarm optimization evolutionary algorithm hybrid .Biosystems,2003,72(1-2): 5-17. SHEN Q,JIANG J H,JIAO C X,et al. Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists .European J Pharmaceutical Sciences,2004,22(2-3): 145-152. MINTO C F,SCHNIDER T W,EGAN T D,et al.Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil I.ModelDevelopment.Anesthesiology,1997,86(1):10-23. EGAN T D,HUIZINGA B,GUPTA S K,et al.Remifentanil pharmacokinetics in obese versus lean patients.Anesthesiology,1998,89(3): 562-573. SHEINER L B,BEAL S L.Some suggestions for measuring predictive performance.J Pharmacokinet Biopharm,1981,9(4): 503-512.

基金

国家自然科学基金资助项目(81171053)

46

Accesses

0

Citation

Detail

段落导航
相关文章

/